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INTRODUCTION

IN MAMMALS, HEMATOPOIESIS shifts to the bone marrow in
late embryogenesis, coincident with the appearance of a

marrow cavity.(1) There hematopoiesis is sustained
throughout adult life unless forced out of the bone marrow
into extramedullary sites by pathological conditions. All
hematopoietic lineages arise from the hematopoietic stem
cell (HSC), and maintenance of HSC self-renewal and
differentiation are critically dependent on the presence of a
supportive microenvironment, or niche. The existence of
such a niche within the bone marrow was first postulated by
Schofield,(2) and the vital role of the bone marrow micro-
environment has been convincingly shown in the three
decades since.

The marrow microenvironment is comprised of cells of
multiple lineages, including fibroblast-like cells, adipo-
cytes, osteoblasts, and endothelial cells. Recent studies
have begun to highlight the contributions of individual
lineages to the hematopoietic niche, with the greatest
weight of evidence thus far in support of important roles
for osteoblasts and the vasculature.(3–5) In humans,
CD146+ subendothelial cells have been reported to serve as
skeletal progenitors capable of generating cells that orga-
nize a hematopoietic microenvironment on transplanta-
tion.(6) Subsequent studies have shown that the endosteal
surface is rich in vasculature with close approximation of
osteoblasts and vessel walls.(7,8) In trabecular bone, it is
unlikely that there are physically distinct endosteal and
perivascular/vascular niches, although the functional roles
of osteoblasts and vascular cells may well differ. This re-
view will focus specifically on the role of cells of the oste-
oblast lineage within the bone marrow niche. In particular,
we will examine the contribution of osteoblasts in sup-
porting hematopoietic stem cells and contrast this with how
distinct stages of osteoblast precursors support developing

B lymphocytes, one of the best-characterized specific he-
matopoietic lineages.

OSTEOBLASTS ARE A DIVERSE POPULATION

To date in the HSC microenvironment literature, oste-
oblasts have largely been considered as a uniform entity.
However, within the osteoblast lineage, there are multiple
stages, just as there are intermediates between HSCs and
mature B lymphocytes. The osteoblast lineage is derived
from a putative mesenchymal stem cell, whose location and
identity in vivo has yet to be firmly established. Once
committed to the osteoblast lineage, through a process that
requires the expression of Runx2, cells differentiate and
express progressively more mature markers of osteo-
blastogenesis including osterix, alkaline phosphatase, and
collagen type I.(9) Mature osteoblasts are identified by their
cuboidal morphology and localization to the bone surface
(endosteal or periosteal), where they secrete extracellular
matrix and express markers of terminal differentiation
such as osteocalcin. Terminally differentiated osteoblasts
themselves have one of three known fates—to become
quiescent lining cells, to differentiate further into osteo-
cytes surrounded by mineral matrix, or to die by apopto-
sis.(10) Whereas osteocytes and mature osteoblasts are
easily identifiable in histological sections, little is known
about the location and fate of osteoprogenitors in vivo.
Osteoblast precursors are likely located in the marrow
space, because bone marrow flushed from the diaphysis
contains cells capable of adhering to plastic, and, when
cultured under osteogenic conditions, a fraction of this
adherent population is capable of differentiating into cells
that express markers of osteoblasts and mineralize the
surrounding matrix.(9) In certain disease states such as se-
vere hyperparathyroidism(11) or fibrous dysplasia,(12) the
hematopoietic marrow is replaced by fibroblastoid stromal
cells that express markers of the osteoblast lineage.(13,14)

Detailed characterization of osteoprogenitors thus far has
been limited by a lack of cell surface markers that would
allow prospective identification and isolation of defined
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precursor populations. However, more recently, the de-
velopment of fluorescent reporter mice in which variants of
green fluorescent protein (GFP) are driven by osteoblast
stage-specific promoters has revolutionized our ability to
study osteoblast differentiation in vivo.(15,16) That each
stage of osteoblast differentiation is functionally distinct is
underscored by the finding, for example, that, whereas dele-
tion of b-catenin in osteoprogenitors inhibits osteoblast dif-
ferentiation in favor of a chondrocytic fate,(17–19) deletion in
differentiated osteoblasts results in severe osteopenia largely
because of enhanced bone resorption.(20,21)

OSTEOBLASTS SUPPORT HEMATOPOIESIS

A role for osteoblasts in supporting hematopoiesis was first
suggested by anatomic evidence. Several groups reported
that primitive hematopoietic cells seem to be enriched near
the endosteal surface,(22,23) whereas more differentiated
progenitors are localized more centrally within the bone
marrow space.(24,25) More recently, visualization of labeled
hematopoietic stem/progenitor cells (HSPCs) by intravital
microscopy showed that HSPCs localized adjacent to en-
dosteal osteoblasts in the settings of HSPC engraftment or
expansion; more mature progenitors were positioned fur-
ther from osteoblasts.(7,8) Moreover, the migration of he-
matopoiesis from the fetal liver to the bone marrow during
embryonic development is critically dependent on normal
bone formation and turnover. Mice deficient in Runx2 fail to
develop a mineralized skeleton,(26,27) and, in these mice,
hematopoiesis shifts to extramedullary organs.(28) In con-
trast, mice lacking macrophage colony-stimulating factor
(M-CSF) have defective osteoclasts and therefore osteope-
trosis and also develop extramedullary hematopoiesis.(29)

In vitro, hematopoietic cell differentiation requires the
supporting presence of stromal cells,(30) a task that can be
performed by cells of the osteoblast lineage.(31,32) A func-
tional role for osteoblasts in regulating hematopoiesis in
vivo was shown by targeted ablation of osteoblasts, through
gancyclovir treatment of mice expressing herpes simplex
thymidine kinase only in differentiated osteoblasts.(33) Loss
of osteoblasts led to a dramatic reduction of bone marrow
cellularity and resultant extramedullary hematopoiesis,
consistent with the loss of the ability of the bone to support
hematopoiesis.(34) Ablation of osteoblasts was followed
acutely by loss of B-cell lymphopoiesis and erythropoiesis in the
bone marrow, with a later decline in primitive hematopoietic
cells.(34,35) Additionally, cells of the osteoblast lineage seem to
play an active role in HSC mobilization, for instance in re-
sponse to granulocyte-colony stimulating factor (G-CSF),(36,37)

although their precise role is still being determined.
Genetic manipulation of either the PTH/PTH-related

peptide receptor (PPR) in osteoblasts(38) or the BMPR1a
receptor(39) leads to increased osteoblast number and en-
hanced HSC frequency. However, osteoblast number is not
the sole determinant of the number of HSCs, because the
reduced osteoblast number seen in biglycan knockout
(KO) mice is not associated with a decrease in HSCs or any
other hematopoietic defect.(40) Several factors elaborated
or influenced by osteoblasts have been identified that can
regulate hematopoiesis, including angiopoietin-1,(41) oste-

opontin,(42,43) thrombopoietin,(44) Wnts,(45) and extracel-
lular calcium.(46) Notch signaling has been implicated by
the finding that increased expression of the Notch ligand
Jagged-1 (Jag1) in osteoblasts after PPR activation is asso-
ciated with an increase in HSC number and that this in-
crease in HSCs could be blocked by administration of a
g-secretase inhibitor,(38) although Mx1-Cre-mediated deletion
of Jag1 in the microenvironment has been reported to yield no
phenotype.(47) Some studies have suggested the importance
of N-cadherin,(8,39,48) whereas others have disputed the rel-
evance of N-cadherin.(40) Thus, whereas osteoblasts clearly
have a role in the establishment of an HSC niche, the mo-
lecular mechanisms remain incompletely defined, and there
are many unanswered questions. In particular, a require-
ment for direct contact between HSCs and osteoblasts, as
opposed to proximity to diffusible factors, has yet to be
definitively shown in vivo, and the precise characterization
of the osteoblasts capable of supporting HSCs is very in-
complete. Furthermore, the interplay between cells of the
osteoblast lineage and perivascular/vascular cells in the
bone marrow niche are largely unknown. In the future, cell-
specific ablation of candidate factors will be useful in clari-
fying many of these issues.

DISTINCT NICHES EXIST WITHIN THE BONE
MARROW FOR DEVELOPING B CELLS

Within the bone marrow, specific niches have also been
identified for maturing hematopoietic cells, including
platelets(49) and B lymphocytes. B-lymphocyte develop-
ment is well characterized, and several studies now point to
the existence of distinct niches for each stage of differen-
tiation. B lymphocytes are generated from HSCs through a
common lymphoid progenitor (CLP), and within the bone
marrow, the earliest identifiable B-cell precursor is the
prepro-B cell. Prepro-B cells differentiate into pro-B cells,
which in turn gives rise to pre-B cells.(50) Immature IgM+ B
cells migrate into the periphery, where maturation occurs
in the spleen. Tokoyoda et al.(51) found that, within bone
marrow stroma, CXCL12 and interleukin (IL)-7, two fac-
tors with critical roles at differing stages of B lymphopoi-
esis, are expressed by separate stromal cell populations.
Whereas prepro-B cells are in contact with CXCL12-
expressing stromal cells, more differentiated pro-B cells
instead are found in contact with IL-7–expressing cells,
suggesting that as B-cell precursors differentiate, they mi-
grate among discrete populations of stromal cells. Finally,
pre-B cells do not contact either CXCL12- or IL-7–ex-
pressing cells, consistent with the finding that in vitro pre-B
cells are no longer dependent on stromal cell support. In-
triguingly, end-stage plasma cells return to the bone mar-
row, where dendritic cells provide a supportive niche,(52)

further supporting the possibility that each stage of B-
lymphocyte differentiation may rely on a specific niche.

GSa MEDIATES OSTEOBLASTIC REGULATION
OF B-CELL DEVELOPMENT

In addition to hematopoietic progenitors, the bone mar-
row contains stromal cells that include precursors of the
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osteoblast lineage. Both CXCL12 and IL-7 can be produced
by cells of the osteoblast lineage, and both are upregulated in
response to PPR-mediated signaling.(35,38,53) This raises the
possibility that either or both populations of stromal cells
expressing CXCL12 or IL-7 may share characteristics with
cells of the osteoblast lineage. Consistent with this model,
Zhu et al.(35) found that primary calvarial cells, which in-
clude osteoblasts and their progenitors, are capable of sup-
porting B lymphopoiesis in culture, and that this supportive
ability is enhanced by treatment with PTH.

The PPR is a G protein–coupled receptor (GPCR), and
the heterotrimeric G protein subunit Gsa is a major
downstream mediator of PPR signaling through the pro-
tein kinase A pathway.(54) We have deleted Gsa in early
osteoprogenitors using Cre recombinase driven by osterix,
a transcription factor expressed early in osteoblastogenesis.
Gsa

OsxKO mice have a dramatic reduction in trabecular
bone.(55) Because enhanced signaling through PPR is as-
sociated with increased HSC number,(38) and because PTH
can also stimulate osteoblastic support of B-lymphocyte
differentiation,(35) we asked whether loss of Gsa would
conversely have a negative impact on hematopoiesis. In
fact, Gsa

OsxKO mice have a significant decrease in B-cell
precursors in the bone marrow, and this results in a re-
duction in circulating B lymphocytes.(55) Within the bone
marrow, B lymphopoiesis is impaired at the pro-B to pre-B
cell transition, whereas earlier prepro-B cells are unaf-
fected. Consistent with the finding that prepro-B cells are
associated with CXCL12+ cells, CXCL12 expression is not
reduced in Gsa

OsxKO osteoblasts. In contrast, IL-7 mRNA
is significantly decreased, and the reduction in pro-B and
pre-B cells is similar to that found in mice lacking either IL-
7 or the IL-7 receptor.(56,57) Moreover, exogenous IL-7 is
sufficient to rescue the pro-B deficit in Gsa

OsxKO mice. The
B-lymphocyte deficiency can be rescued by transplanting
KO bone marrow into a wildtype host, confirming that this
is caused by a defect in the microenvironment. Thus, Gsa

signaling within cells of the osteoblast lineage is required
for normal bone marrow B lymphopoiesis and likely in-
volves IL-7 production. Candidate Gsa-coupled GPCRs in
the osteoblast lineage that might regulate B-lymphocyte
development include PPR and the prostaglandin E2 re-
ceptors EP2R and EP4R.(58) Of note, prostaglandin E2 has
also been reported to modulate the HSC niche.(59)

MODEL FOR OSTEOBLASTIC SUPPORT OF
HEMATOPOIETIC DEVELOPMENT

To summarize, within the bone marrow, cells of the os-
teoblast lineage have unequivocally been shown to con-
stitute a niche for HSCs and now have been found to
support differentiation of the B-lymphocyte lineage as
well. Ablation of Gsa early in the osteoblast lineage results
in loss of pro-B cells and is associated with decreased ex-
pression of IL-7 in cells expressing osterix.(55) Because IL-
7+ cells are found in the marrow and are distinct from mature
endosteal osteoblasts,(51) perhaps IL-7–expressing stromal
cells represent a subset of cells of the osteoblast lineage in-
volved in supporting hematopoiesis.

Based on the evidence to date regarding the role of os-
teoblast lineage cells in the bone marrow niche, we propose
that cells derived from osteoprogenitors and in various
stages of differentiation provide distinct niches for hema-
topoietic cells. Thus, as others have postulated,(3–5,60) ter-
minally differentiated osteoblasts along the endosteal sur-
face would serve as a niche for HSCs, perhaps in their most
quiescent stage.(61) Once committed to the B-cell lineage,
prepro-B cells migrate to CXCL12+ cells. Differentiation
into pro-B cells requires IL-7, produced by osteoblast lin-
eage cells expressing osterix. Thus, the earliest hemato-
poietic progenitor, the HSC, is supported by mature oste-
oblasts, whereas more differentiated pro-B cells are
themselves supported by osteoprogenitors located in the
marrow space (Fig. 1). In support of the concept that ma-
ture osteoblasts and stromal osteoprogenitors have differ-
ential effects on hematopoietic cells, Balduino et al.(62)

found that both osteoblasts and subendosteal reticular cells
express osteogenic markers. However, whereas osteoblasts
maintain hematopoietic progenitors with low proliferation,
the stromal reticular cell fraction, which likely includes
osteoprogenitors, induces proliferation and differentiation
of hematopoietic cells. One prediction of this model is that
CXCL12(hi)-reticular cells,(60) which contact intermediary
prepro-B cells, might also represent a subset of the osteo-
blast lineage. IL-7+Osx+ cells and CXCL12(hi) cells may or
may not be the same population as those Osx+ cells that
ultimately give rise to terminally differentiated osteoblasts.
Much work remains to be done to confirm such a model,
but it provides a framework with which to begin to dissect
the mechanisms of cross-talk between the skeletal and
hematopoietic systems. In addition, whether cells of the
osteoblast lineage play any role in supporting hematopoi-
etic lineages other than B lymphocytes is still unknown.

CLINICAL RELEVANCE

The role of the microenvironment in disease pathogenesis
is garnering increasing attention, with several recent reports
highlighting the importance of the microenvironment on
neoplasia.(63–66) It has long been known clinically that many
malignancies display a predilection for metastasis to bone,
and whether these predilections involve the same molecular
mechanisms as niche interactions is an area of intense in-
terest. With respect to B-cell lineage malignancies, multiple
myeloma bone disease is a devastating complication that
involves interactions between malignant plasma cells, oste-
oblasts, and osteoclasts.(67) In a model of human MLL-AF9
leukemia, myeloid versus lymphoid lineage could be di-
rected by changes in the microenvironment.(68) How mye-
loid malignancies are influenced by osteoblasts is at present
unknown. However, human leukemic cells transplanted into
NOD/SCID mice home to osteoblasts,(69,70) strongly sup-
porting a functional relationship and suggesting that inter-
vening in such an interaction may be a worthy area of study.

CONCLUDING REMARKS

Because of the very nature of the bone marrow niche, at
the intersection of hematopoietic, skeletal, and vascular
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biology, approaches to this field have been varied, reflecting
the diverse origins of the investigators. As we move forward,
there will be a need to reconcile anatomic, genetic, and
functional data to better delineate the relative contributions
and roles of the myriad components. For example, HSCs
have been variably identified by immunophenotype, im-
munohistochemical localization, and functional studies.
HSCs themselves may also exert some influence on the
microenvironment, because HSCs have been shown to exert
stimulatory effects on osteogenic differentiation of bone
marrow stromal cells in a co-culture system.(71) In addition,
bone-resorbing osteoclasts, derived from the macrophage/
monocyte lineage,(72) have been implicated in the regulation
of the HSC niche,(73) highlighting the complexity of cross-
talk between an ever-growing list of participants. On the
stromal side, a variety of promoters have been used to dis-
sect the microenvironment, and a better understanding of
the spatial and temporal relationships between markers
expressed by these cell populations is needed. As an ex-
ample, Mx1-Cre is commonly used in combination with re-
ciprocal transplantation studies to elucidate the relative in-
trinsic versus extrinsic contributions of various gene
mutations to hematopoietic phenotypes. However, the ex-
pression of Mx1-Cre within the stromal microenvironment
and its relative efficacy in different stromal cell compart-
ments remains obscure. In particular, although Mx1 is ex-
pressed in the skeleton,(74) phenotypes resulting from Mx1-
Cre–mediated deletion differ from those obtained with os-
teoblast-specific promoter-driven Cre recombinases. Dele-
tion of Rb in the microenvironment with Mx1 leads to
myeloproliferative disease,(63) whereas deletion of Rb
within the osteoblast lineage results in enhanced predilec-
tion for development of osteosarcoma.(75)

In summary, osteoblasts cannot be considered as a uni-
form entity, but rather as a complex population of cells

with a broad spectrum of developmental potential. A bet-
ter understanding of how anatomic localization, immuno-
phenotype, and stage of differentiation and cellular func-
tion are interrelated will be crucial to advance the biology
of osteoblasts within the bone marrow niche.

ACKNOWLEDGMENTS

The authors thank Drs. Cristina Lo Celso, Louise Pur-
ton, and Sean Wu for thoughtful comments on this manu-
script. This work was supported by NIH Grants AR053781
and AR054741 (to J.Y.W.), HL081030 (to H.M.K. and
D.T.S.), and DK117940 (to H.M.K.).

REFERENCES

1. Godin I, Cumano A 2002 The hare and the tortoise: An em-
bryonic haematopoietic race. Nat Rev Immunol 2:593–604.

2. Schofield R 1978 The relationship between the spleen colony-
forming cell and the haemopoietic stem cell. Blood Cells 4:
7–25.

3. Adams GB, Scadden DT 2006 The hematopoietic stem cell in
its place. Nat Immunol 7:333–337.

4. Wilson A, Trumpp A 2006 Bone-marrow haematopoietic-stem-
cell niches. Nat Rev Immunol 6:93–106.

5. Kiel MJ, Morrison SJ 2008 Uncertainty in the niches that main-
tain haematopoietic stem cells. Nat Rev Immunol 8:290–301.

6. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S,
Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M,
Bianco P 2007 Self-renewing osteoprogenitors in bone marrow
sinusoids can organize a hematopoietic microenvironment.
Cell 131:324–336.

7. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S,
Fujisaki J, Cote D, Rowe DW, Lin CP, Scadden DT 2009 Live-
animal tracking of individual haematopoietic stem/progenitor
cells in their niche. Nature 457:92–96.

8. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko
K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS,

FIG. 1. Model for the role of the osteoblast
lineage in the bone marrow hematopoietic
niches. Cells of the osteoblast lineage are in
blue, whereas hematopoietic cells are red.
Within each lineage, darker color intensity
reflects a more advanced stage of differenti-
ation. In this model, mature osteocalcin-ex-
pressing osteoblasts provide a niche for
HSCs, whereas more-differentiated pro-B
cells are supported by cells expressing both
osterix and IL-7. However, many questions
await further study. Are the osterix+IL-7+

cells the same as osterix+ osteoprogenitors?
Cells of the osteoblast lineage can produce
CXCL12; are CXCL12+ cells that contact
prepro-B cells a subset of the osteoblast lin-
eage? Finally, do HSCs require direct contact
with mature osteoblasts and do earlier cells in
the osteoblast lineage have any role in sup-
porting HSCs?

762 WU ET AL.



Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L
2009 Detection of functional haematopoietic stem cell niche
using real-time imaging. Nature 457:97–101.

9. Aubin JE, Triffit JT 2002 Mesenchymal stem cells and osteo-
blast differentiation. In: Bilezikian JP, Raisz LG, Rodan GA
(eds.) Principles of Bone Biology, 2nd ed., vol. 1. Academic
Press, New York, NY, USA, pp. 59–81.

10. Manolagas SC 2000 Birth and death of bone cells: Basic reg-
ulatory mechanisms and implications for the pathogenesis and
treatment of osteoporosis. Endocr Rev 21:115–137.

11. Pyrah LN, Hodgkinson A, Anderson CK 1966 Primary hy-
perparathyroidism. Br J Surg 53:245–316.

12. Marie PJ, de Pollak C, Chanson P, Lomri A 1997 Increased
proliferation of osteoblastic cells expressing the activating Gs
alpha mutation in monostotic and polyostotic fibrous dyspla-
sia. Am J Pathol 150:1059–1069.

13. Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti
A, Saxton JM, Kronenberg HM, Baron R, Schipani E 2001
Activated parathyroid hormone/parathyroid hormone-related
protein receptor in osteoblastic cells differentially affects
cortical and trabecular bone. J Clin Invest 107:277–286.

14. Lotinun S, Sibonga JD, Turner RT 2005 Evidence that the cells
responsible for marrow fibrosis in a rat model for hyperpara-
thyroidism are preosteoblasts. Endocrinology 146:4074–4081.

15. Wang YH, Liu Y, Buhl K, Rowe DW 2005 Comparison of the
action of transient and continuous PTH on primary osteoblast
cultures expressing differentiation stage-specific GFP. J Bone
Miner Res 20:5–14.

16. Bilic-Curcic I, Kronenberg M, Jiang X, Bellizzi J, Mina M,
Marijanovic I, Gardiner EM, Rowe DW 2005 Visualizing levels
of osteoblast differentiation by a two-color promoter-GFP strat-
egy: Type I collagen-GFPcyan and osteocalcin-GFPtpz. Genesis
43:87–98.

17. Day TF, Guo X, Garrett-Beal L, Yang Y 2005 Wnt/beta-cat-
enin signaling in mesenchymal progenitors controls osteoblast
and chondrocyte differentiation during vertebrate skeleto-
genesis. Dev Cell 8:739–750.

18. Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C
2005 Canonical Wnt/beta-catenin signaling prevents osteoblasts
from differentiating into chondrocytes. Dev Cell 8:727–738.

19. Rodda SJ, McMahon AP 2006 Distinct roles for Hedgehog
and canonical Wnt signaling in specification, differentiation
and maintenance of osteoblast progenitors. Development
133:3231–3244.

20. Glass DA II, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers
H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G
2005 Canonical Wnt signaling in differentiated osteoblasts
controls osteoclast differentiation. Dev Cell 8:751–764.

21. Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere
MC, Bouxsein ML, Deng L, Clemens TL, Williams BO 2005
Essential role of beta-catenin in postnatal bone acquisition. J
Biol Chem 280:21162–21168.

22. Lord BI, Testa NG, Hendry JH 1975 The relative spatial dis-
tributions of CFUs and CFUc in the normal mouse femur.
Blood 46:65–72.

23. Gong JK 1978 Endosteal marrow: A rich source of hemato-
poietic stem cells. Science 199:1443–1445.

24. Lambertsen RH, Weiss L 1984 A model of intramedullary
hematopoietic microenvironments based on stereologic study
of the distribution of endocloned marrow colonies. Blood
63:287–297.

25. Nilsson SK, Johnston HM, Coverdale JA 2001 Spatial locali-
zation of transplanted hemopoietic stem cells: Inferences for
the localization of stem cell niches. Blood 97:2293–2299.

26. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC,
Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen
BR, Selby PB, Owen MJ 1997 Cbfa1, a candidate gene for
cleidocranial dysplasia syndrome, is essential for osteoblast
differentiation and bone development. Cell 89:765–771.

27. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi
K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M,
Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T 1997 Tar-
geted disruption of Cbfa1 results in a complete lack of bone

formation owing to maturational arrest of osteoblasts. Cell
89:755–764.

28. Deguchi K, Yagi H, Inada M, Yoshizaki K, Kishimoto T,
Komori T 1999 Excessive extramedullary hematopoiesis in
Cbfa1-deficient mice with a congenital lack of bone marrow.
Biochem Biophys Res Commun 255:352–359.

29. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S,
Okamura H, Sudo T, Shultz LD 1990 The murine mutation
osteopetrosis is in the coding region of the macrophage colony
stimulating factor gene. Nature 345:442–444.

30. Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, Eaves
CJ 1990 Functional characterization of individual human hema-
topoietic stem cells cultured at limiting dilution on supportive
marrow stromal layers. Proc Natl Acad Sci USA 87:3584–3588.

31. Taichman RS, Reilly MJ, Emerson SG 1996 Human osteo-
blasts support human hematopoietic progenitor cells in vitro
bone marrow cultures. Blood 87:518–524.

32. Taichman RS, Emerson SG 1998 The role of osteoblasts in the
hematopoietic microenvironment. Stem Cells 16:7–15.

33. Visnjic D, Kalajzic I, Gronowicz G, Aguila HL, Clark SH,
Lichtler AC, Rowe DW 2001 Conditional ablation of the os-
teoblast lineage in Col2.3deltatk transgenic mice. J Bone
Miner Res 16:2222–2231.

34. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J,
Aguila HL 2004 Hematopoiesis is severely altered in mice with
an induced osteoblast deficiency. Blood 103:3258–3264.

35. Zhu J, Garrett R, Jung Y, Zhang Y, Kim N, Wang J, Joe GJ,
Hexner E, Choi Y, Taichman RS, Emerson SG 2007 Osteo-
blasts support B-lymphocyte commitment and differentiation
from hematopoietic stem cells. Blood 109:3706–3712.

36. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ,
Thomas SA, Frenette PS 2006 Signals from the sympathetic
nervous system regulate hematopoietic stem cell egress from
bone marrow. Cell 124:407–421.

37. Mayack SR, Wagers AJ 2008 Osteolineage niche cells initiate
hematopoietic stem cell mobilization. Blood 112:519–531.

38. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP,
Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR,
Milner LA, Kronenberg HM, Scadden DT 2003 Osteoblastic
cells regulate the haematopoietic stem cell niche. Nature 425:
841–846.

39. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug
J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li
L 2003 Identification of the haematopoietic stem cell niche and
control of the niche size. Nature 425:836–841.

40. Kiel MJ, Radice GL, Morrison SJ 2007 Lack of evidence that
hematopoietic stem cells depend on N-cadherin-mediated adhe-
sion to osteoblasts for their maintenance. Cell Stem Cell 1:204–217.

41. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K,
Ito K, Koh GY, Suda T 2004 Tie2/angiopoietin-1 signaling
regulates hematopoietic stem cell quiescence in the bone
marrow niche. Cell 118:149–161.

42. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E,
Cheng T, Dombkowski D, Calvi LM, Rittling SR, Scadden DT
2005 Osteopontin is a hematopoietic stem cell niche compo-
nent that negatively regulates stem cell pool size. J Exp Med
201:1781–1791.

43. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ,
Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock
DN 2005 Osteopontin, a key component of the hematopoietic
stem cell niche and regulator of primitive hematopoietic pro-
genitor cells. Blood 106:1232–1239.

44. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K,
Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K,
Miyazaki H, Takahashi T, Suda T 2007 Thrombopoietin/MPL
signaling regulates hematopoietic stem cell quiescence and in-
teraction with the osteoblastic niche. Cell Stem Cell 1:685–697.

45. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM,
Kronenberg HM, Scadden DT 2008 Wnt signaling in the niche
enforces hematopoietic stem cell quiescence and is necessary
to preserve self-renewal in vivo. Cell Stem Cell 2:274–283.

46. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski
ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden

OSTEOBLASTS AND THE BONE MARROW NICHE 763



DT 2006 Stem cell engraftment at the endosteal niche is spec-
ified by the calcium-sensing receptor. Nature 439:599–603.

47. Mancini SJ, Mantei N, Dumortier A, Suter U, MacDonald
HR, Radtke F 2005 Jagged1-dependent Notch signaling is
dispensable for hematopoietic stem cell self-renewal and
differentiation. Blood 105:2340–2342.

48. Haug JS, He XC, Grindley JC, Wunderlich JP, Gaudenz K, Ross
JT, Paulson A, Wagner KP, Xie Y, Zhu R, Yin T, Perry JM,
Hembree MJ, Redenbaugh EP, Radice GL, Seidel C, Li L 2008
N-cadherin expression level distinguishes reserved versus primed
states of hematopoietic stem cells. Cell Stem Cell 2:367–379.

49. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K,
Jin DK, Dias S, Zhang F, Hartman TE, Hackett NR, Crystal
RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de
Sauvage F, Rafii S 2004 Chemokine-mediated interaction of
hematopoietic progenitors with the bone marrow vascular ni-
che is required for thrombopoiesis. Nat Med 10:64–71.

50. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K
1991 Resolution and characterization of pro-B and pre-pro-B
cell stages in normal mouse bone marrow. J Exp Med 173:
1213–1225.

51. Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T
2004 Cellular niches controlling B lymphocyte behavior within
bone marrow during development. Immunity 20:707–718.

52. Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer
R, Shachar I, Jung S 2008 Perivascular clusters of dendritic
cells provide critical survival signals to B cells in bone marrow
niches. Nat Immunol 9:388–395.

53. Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman
NI, McCauley LK, Taichman RS 2006 Regulation of SDF-
1 (CXCL12) production by osteoblasts; a possible mechanism
for stem cell homing. Bone 38:497–508.

54. Juppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani
E, Richards J, Kolakowski LF Jr, Hock J, Potts JT Jr,
Kronenberg HM, Segre GV 1991 A G protein-linked receptor
for parathyroid hormone and parathyroid hormone-related
peptide. Science 254:1024–1026.

55. Wu J, Purton LE, Rodda SJ, Chen M, Weinstein LS, McMahon
AP, Scadden DT, Kronenberg HM 2008 Osteoblastic regula-
tion of B lymphopoiesis is mediated by Gsalpha-dependent
signaling pathways. Proc Natl Acad Sci USA 105:16976–16981.

56. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ,
Maraskovsky E, Gliniak BC, Park LS, Ziegler SF, Williams

DE, Ware CB, Meyer JD, Davison BL 1994 Early lymphocyte
expansion is severely impaired in interleukin 7 receptor-defi-
cient mice. J Exp Med 180:1955–1960.

57. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach
SE, Murray R 1995 Lymphopenia in interleukin (IL)-7 gene-
deleted mice identifies IL-7 as a nonredundant cytokine. J Exp
Med 181:1519–1526.

58. Suda M, Tanaka K, Natsui K, Usui T, Tanaka I, Fukushima M,
Shigeno C, Konishi J, Narumiya S, Ichikawa A, Nakao N 1996
Prostaglandin E receptor subtypes in mouse osteoblastic cell
line. Endocrinology 137:1698–1705.

59. North TE, Goessling W, Walkley CR, Lengerke C, Kopani
KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T,
Fitzgerald GA, Daley GQ, Orkin SH, Zon LI 2007 Prosta-
glandin E2 regulates vertebrate haematopoietic stem cell ho-
meostasis. Nature 447:1007–1011.

60. Nagasawa T 2006 Microenvironmental niches in the bone
marrow required for B-cell development. Nat Rev Immunol
6:107–116.

61. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose
W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E,
Lio P, Macdonald HR, Trumpp A 2008 Hematopoietic stem
cells reversibly switch from dormancy to self-renewal during
homeostasis and repair. Cell 135:1118–1129.

62. Balduino A, Hurtado SP, Frazao P, Takiya CM, Alves LM,
Nasciutti LE, El-Cheikh MC, Borojevic R 2005 Bone marrow
subendosteal microenvironment harbours functionally distinct
haemosupportive stromal cell populations. Cell Tissue Res
319:255–266.

63. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH 2007 Rb
regulates interactions between hematopoietic stem cells and
their bone marrow microenvironment. Cell 129:1081–1095.

64. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J,
McArthur GA, Westmoreland SV, Chambon P, Scadden DT,
Purton LE 2007 A microenvironment-induced myeloprolifer-
ative syndrome caused by retinoic acid receptor gamma defi-
ciency. Cell 129:1097–1110.

65. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP,
Marshall D, Fu L, Januario T, Kallop D, Nannini-Pepe M,
Kotkow K, Marsters JC, Rubin LL, de Sauvage FJ 2008 A
paracrine requirement for hedgehog signalling in cancer. Na-
ture 455:406–410.

66. Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, Yang X,
Knowles S, Horn W, Li Y, Zhang S, Yang Y, Vakili ST, Yu M,
Burns D, Robertson K, Hutchins G, Parada LF, Clapp DW
2008 Nf1-dependent tumors require a microenvironment
containing Nf1+/2- and c-kit-dependent bone marrow. Cell
135:437–448.

67. Edwards CM, Zhuang J, Mundy GR 2008 The pathogenesis of
the bone disease of multiple myeloma. Bone 42:1007–1013.

68. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm
JS, Zheng Y, Cancelas JA, Gu Y, Jansen M, Dimartino JF,
Mulloy JC 2008 Microenvironment determines lineage fate in a
human model of MLL-AF9 leukemia. Cancer Cell 13:483–495.

69. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H,
Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N,
Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N,
Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD 2007
Chemotherapy-resistant human AML stem cells home to and
engraft within the bone-marrow endosteal region. Nat Bio-
technol 25:1315–1321.

70. Ninomiya M, Abe A, Katsumi A, Xu J, Ito M, Arai F, Suda T,
Kiyoi H, Kinoshita T, Naoe T 2007 Homing, proliferation and
survival sites of human leukemia cells in vivo in immunodefi-
cient mice. Leukemia 21:136–142.

71. Jung Y, Song J, Shiozawa Y, Wang J, Wang Z, Williams B,
Havens A, Schneider A, Ge C, Franceschi RT, McCauley LK,
Krebsbach PH, Taichman RS 2008 Hematopoietic stem cells
regulate mesenchymal stromal cell induction into osteoblasts
thereby participating in the formation of the stem cell niche.
Stem Cells 26:2042–2051.

72. Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy
GR, Jones SJ, Boyde A, Suda T 1988 Osteoclast-like cell for-
mation and its regulation by osteotropic hormones in mouse
bone marrow cultures. Endocrinology 122:1373–1382.

73. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg
Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A,
Lapidot T 2006 Osteoclasts degrade endosteal components and
promote mobilization of hematopoietic progenitor cells. Nat
Med 12:657–664.

74. Kuhn R, Schwenk F, Aguet M, Rajewsky K 1995 Inducible
gene targeting in mice. Science 269:1427–1429.

75. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M,
Roth SI, Rodda SJ, Snay E, Dunning P, Fahey FH, Alt FW,
McMahon AP, Orkin SH 2008 Conditional mouse osteosar-
coma, dependent on p53 loss and potentiated by loss of Rb,
mimics the human disease. Genes Dev 22:1662–1676.

Received in original form December 15, 2008; revised form
January 12, 2009; accepted February 12, 2009.

764 WU ET AL.


